Reaalteaduste seminar täiskasvanutele - Printerisõbralik versioon +- Elektroonikafoorum.com (https://elektroonikafoorum.com) +-- Foorum: Arutelud (https://elektroonikafoorum.com/forum-3.html) +--- Foorum: Algajatele (https://elektroonikafoorum.com/forum-14.html) +--- Teema: Reaalteaduste seminar täiskasvanutele (/thread-835.html) |
RE: Reaalteaduste seminar täiskasvanutele - madis - 25-07-2021 Kirjutasin n-faasilise süsteemi võimsuse võrrandi, võtsin tuletise ajast sõltuvast osast ning leidsin tingimuse mil see tuletis=0 RE: Reaalteaduste seminar täiskasvanutele - madis64 - 25-07-2021 Selle koha peal kukub "täiskasvanu", kes selliste arvutustega iga päev ei tegele, käru pealt maha ja läheb näoraamatut või instagrammi lugema Kui üritaks oma kunagisi matemaatilisi oskuseid tolmutada - viitsid selle tuletuskäigu siia üle panna? RE: Reaalteaduste seminar täiskasvanutele - madis - 25-07-2021 <math xmlns="http://www.w3.org/1998/Math/MathML"><mspace linebreak="newline"/><mi mathvariant="normal">ω</mi><mo>=</mo><mn>2</mn><mi mathvariant="normal">π</mi><mi mathvariant="normal">f</mi><mo>*</mo><mi mathvariant="normal">t</mi><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo>-</mo><mo> </mo><mi mathvariant="normal">see</mi><mo> </mo><mi mathvariant="normal">on</mi><mo> </mo><mi mathvariant="normal">siis</mi><mo> </mo><mi mathvariant="normal">ajaparameeter</mi><mspace linebreak="newline"/><mi mathvariant="normal">α</mi><mo>,</mo><mi mathvariant="normal">β</mi><mo>,</mo><mi mathvariant="normal">γ</mi><mo>.</mo><mo>.</mo><mo>.</mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo>-</mo><mo> </mo><mi mathvariant="normal">need</mi><mo> </mo><mi mathvariant="normal">on</mi><mo> </mo><mi mathvariant="normal">faa</mi><mi>s</mi><mi>i</mi><mi>n</mi><mi mathvariant="normal">ihked</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">esimene</mi><mo> </mo><mi mathvariant="normal">faas</mi><mo> </mo><mi mathvariant="normal">on</mi><mo> </mo><mi mathvariant="normal">ilma</mi><mo> </mo><mi mathvariant="normal">nihketa</mi><mo> </mo><mi mathvariant="normal">ja</mi><mo> </mo><mi mathvariant="normal">ilma</mi><mo> </mo><mi mathvariant="normal">t</mi><mi mathvariant="normal">ä</mi><mi mathvariant="normal">heta</mi><mo>,</mo><mo> </mo><mi mathvariant="normal">st</mi><mo> </mo><mn>3</mn><mi mathvariant="normal">faasilisel</mi><mo> </mo><mi mathvariant="normal">on</mi><mo> </mo><mn>2</mn><mo> </mo><mi mathvariant="normal">nihet</mi><mo>)</mo><mo> </mo><mspace linebreak="newline"/><mi>P</mi><mo>=</mo><mfrac><mrow><msup><mi>U</mi><mn>2</mn></msup></mrow><mi>R</mi></mfrac><mo>(</mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mi>ω</mi><mo> </mo><mo>+</mo><mo> </mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mo>(</mo><mi>ω</mi><mo>+</mo><mi>α</mi><mo>)</mo><mo> </mo><mo>+</mo><mo> </mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mo>(</mo><mi>ω</mi><mo>+</mo><mi>β</mi><mo>)</mo><mo> </mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>)</mo><mspace linebreak="newline"/><mi mathvariant="normal">ignoreerime</mi><mo> </mo><mi mathvariant="normal">konstantset</mi><mo> </mo><mi mathvariant="normal">osa</mi><mo> </mo><mfrac><mrow><msup><mi>U</mi><mn>2</mn></msup></mrow><mi>R</mi></mfrac><mo> </mo><mspace linebreak="newline"/><mi mathvariant="normal">kui</mi><mo> </mo><mi mathvariant="normal">ajaparameeter</mi><mo> </mo><mi mathvariant="normal">ei</mi><mo> </mo><mi mathvariant="normal">muutu</mi><mo>,</mo><mo> </mo><mi mathvariant="normal">siis</mi><mo> </mo><mi mathvariant="normal">j</mi><mi mathvariant="normal">ä</mi><mi mathvariant="normal">relikult</mi><mo> </mo><mi mathvariant="normal">on</mi><mo> </mo><mi mathvariant="normal">v</mi><mi mathvariant="normal">õ</mi><mi mathvariant="normal">imsus</mi><mo> </mo><mi mathvariant="normal">kons</mi><mi>t</mi><mi>a</mi><mi>n</mi><mi mathvariant="normal">tne</mi><mspace linebreak="newline"/><mi mathvariant="normal">kui</mi><mo> </mo><mi mathvariant="normal">funktsioon</mi><mo> </mo><mi mathvariant="normal">ei</mi><mo> </mo><mi mathvariant="normal">muutu</mi><mo>,</mo><mo> </mo><mi mathvariant="normal">siis</mi><mo> </mo><mi mathvariant="normal">tema</mi><mo> </mo><mi mathvariant="normal">tuletis</mi><mo> </mo><mi mathvariant="normal">on</mi><mo> </mo><mn>0</mn><mo>,</mo><mo> </mo><mi mathvariant="normal">j</mi><mi mathvariant="normal">ä</mi><mi mathvariant="normal">relikult</mi><mspace linebreak="newline"/><mo>(</mo><mrow><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mi>ω</mi><mo> </mo><mo>+</mo><mo> </mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mo>(</mo><mrow><mi>ω</mi><mo>+</mo><mi>α</mi></mrow><mo>)</mo><mo> </mo><mo>+</mo><mo> </mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mo>(</mo><mrow><mi>ω</mi><mo>+</mo><mi>β</mi></mrow><mo>)</mo><mo> </mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo></mrow><mo>)</mo><mo>'</mo><mo> </mo><mo>=</mo><mn>0</mn><mspace linebreak="newline"/><mo>(</mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mi>ω</mi><mo mathvariant="italic">)</mo><mo mathvariant="italic">'</mo><mo mathvariant="italic">=</mo><mn mathvariant="italic">2</mn><mi mathvariant="italic">s</mi><mi mathvariant="italic">i</mi><mi mathvariant="italic">n</mi><mi>ω</mi><mi mathvariant="italic">c</mi><mi mathvariant="italic">o</mi><mi mathvariant="italic">s</mi><mi>ω</mi><mspace linebreak="newline"/><mi mathvariant="normal">tuletis</mi><mo> </mo><mi mathvariant="normal">seega</mi><mspace linebreak="newline"/><mn>2</mn><mo>(</mo><mi>s</mi><mi>i</mi><mi>n</mi><mi>ω</mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>ω</mi><mo mathvariant="italic">+</mo><mi>s</mi><mi>i</mi><mi>n</mi><mo mathvariant="italic">(</mo><mi>ω</mi><mo mathvariant="italic">+</mo><mi>α</mi><mo mathvariant="italic">)</mo><mi>c</mi><mi>o</mi><mi>s</mi><mi>ω</mi><mo mathvariant="italic" mathvariant="italic">(</mo><mrow><mi>ω</mi><mo mathvariant="italic">+</mo><mi>α</mi></mrow><mo mathvariant="italic" mathvariant="italic">)</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>)</mo><mspace linebreak="newline"/><mi mathvariant="normal">teisendame</mi><mo> </mo><mi>s</mi><mi>i</mi><mi>n</mi><mo mathvariant="italic">(</mo><mrow><mi>ω</mi><mo mathvariant="italic">+</mo><mi>α</mi></mrow><mo mathvariant="italic">)</mo><mo>=</mo><mi>s</mi><mi>i</mi><mi>n</mi><mi>ω</mi><mo mathvariant="italic">*</mo><mi mathvariant="italic">c</mi><mi mathvariant="italic">o</mi><mi mathvariant="italic">s</mi><mi>α</mi><mo mathvariant="italic"> </mo><mo mathvariant="italic">+</mo><mo mathvariant="italic"> </mo><mi mathvariant="italic">c</mi><mi mathvariant="italic">o</mi><mi mathvariant="italic">s</mi><mi>ω</mi><mo mathvariant="italic">*</mo><mi mathvariant="italic">s</mi><mi mathvariant="italic">i</mi><mi mathvariant="italic">n</mi><mi>α</mi><mo mathvariant="italic"> </mo><mo mathvariant="italic"> </mo><mi>n</mi><mi>i</mi><mi>n</mi><mi>g</mi><mo mathvariant="italic"> </mo><mi mathvariant="italic">c</mi><mi mathvariant="italic">o</mi><mi mathvariant="italic">s</mi><mo mathvariant="italic" mathvariant="italic">(</mo><mrow><mi>ω</mi><mo mathvariant="italic">+</mo><mi>α</mi></mrow><mo mathvariant="italic" mathvariant="italic">)</mo><mo>=</mo><mi mathvariant="italic">cos</mi><mi>ω</mi><mo mathvariant="italic">*</mo><mi>c</mi><mi>o</mi><mi>s</mi><mi>α</mi><mo mathvariant="italic"> </mo><mo mathvariant="italic">-</mo><mo mathvariant="italic"> </mo><mi mathvariant="italic">sin</mi><mi>ω</mi><mo mathvariant="italic">*</mo><mi>s</mi><mi>i</mi><mi>n</mi><mi>α</mi><mspace linebreak="newline"/><mi mathvariant="normal">asendame</mi><mo> </mo><mi mathvariant="normal">ja</mi><mo> </mo><mi mathvariant="normal">korrutame</mi><mo> </mo><mi mathvariant="normal">ning</mi><mo> </mo><mi mathvariant="normal">toome</mi><mo> </mo><mi mathvariant="normal">ü</mi><mi mathvariant="normal">hised</mi><mo> </mo><mi mathvariant="normal">tegurid</mi><mo> </mo><mi mathvariant="normal">sulgude</mi><mo> </mo><mi mathvariant="normal">ette</mi><mspace linebreak="newline"/><mn>2</mn><mo>(</mo><mi>s</mi><mi>i</mi><mi>n</mi><mi>ω</mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>ω</mi><mo mathvariant="italic">)</mo><mo mathvariant="italic">(</mo><mn mathvariant="italic">1</mn><mo mathvariant="italic">+</mo><mi mathvariant="italic">c</mi><mi mathvariant="italic">o</mi><msup><mi mathvariant="italic">s</mi><mn>2</mn></msup><mi mathvariant="normal">α</mi><mo>-</mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mi>α</mi><mo mathvariant="italic">+</mo><mi>c</mi><mi>o</mi><msup><mi>s</mi><mn>2</mn></msup><mi>β</mi><mo>-</mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mi>β</mi><mo mathvariant="italic">.</mo><mo mathvariant="italic">.</mo><mo mathvariant="italic">.</mo><mo mathvariant="italic">)</mo><mo mathvariant="italic">+</mo><mn mathvariant="italic">2</mn><mfenced open="(" close=")"><mrow><mi mathvariant="normal">sin</mi><mi mathvariant="normal">α</mi><mi mathvariant="normal">cos</mi><mi mathvariant="normal">α</mi><mo>+</mo><mi>sin</mi><mi mathvariant="normal">β</mi><mi>cos</mi><mi mathvariant="normal">β</mi><mo>.</mo><mo>.</mo></mrow></mfenced><mo>(</mo><mi>c</mi><mi>o</mi><msup><mi>s</mi><mn>2</mn></msup><mi>ω</mi><mo>-</mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mi>ω</mi><mo>)</mo><mspace linebreak="newline"/><mi mathvariant="normal">anal</mi><mi mathvariant="normal">ü</mi><mi mathvariant="normal">ü</mi><mi mathvariant="normal">sime</mi><mo>,</mo><mo> </mo><mi mathvariant="normal">mis</mi><mo> </mo><mi mathvariant="normal">juhul</mi><mo> </mo><mi mathvariant="normal">on</mi><mo> </mo><mi mathvariant="normal">vastus</mi><mo> </mo><mi mathvariant="normal">alati</mi><mo> </mo><mn>0</mn><mspace linebreak="newline"/><mi>s</mi><mi>i</mi><mi>n</mi><mi>ω</mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>ω</mi><mo mathvariant="italic"> </mo><mo mathvariant="italic">-</mo><mo mathvariant="italic"> </mo><mi mathvariant="normal">ei</mi><mo> </mo><mi mathvariant="normal">saa</mi><mo> </mo><mi mathvariant="normal">olla</mi><mo> </mo><mi mathvariant="normal">null</mi><mo> </mo><mi mathvariant="normal">iga</mi><mo> </mo><mi mathvariant="normal">ω</mi><mo> </mo><mi mathvariant="normal">v</mi><mi mathvariant="normal">ä</mi><mi mathvariant="normal">ä</mi><mi mathvariant="normal">rtuse</mi><mo> </mo><mi mathvariant="normal">korral</mi><mspace linebreak="newline"/><mi>c</mi><mi>o</mi><msup><mi>s</mi><mn>2</mn></msup><mi>ω</mi><mo>-</mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mi>ω</mi><mo> </mo><mo>-</mo><mo> </mo><mi mathvariant="normal">samuti</mi><mo> </mo><mi mathvariant="normal">mitte</mi><mspace linebreak="newline"/><mn mathvariant="italic">1</mn><mo mathvariant="italic">+</mo><mi>c</mi><mi>o</mi><msup><mi>s</mi><mn>2</mn></msup><mi mathvariant="normal">α</mi><mo>-</mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mi>α</mi><mo mathvariant="italic">+</mo><mi>c</mi><mi>o</mi><msup><mi>s</mi><mn>2</mn></msup><mi>β</mi><mo>-</mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mi>β</mi><mo mathvariant="italic">.</mo><mo mathvariant="italic">.</mo><mo mathvariant="italic">.</mo><mo mathvariant="italic"> </mo><mi mathvariant="normal">on</mi><mo> </mo><mi mathvariant="normal">null</mi><mo> </mo><mi mathvariant="normal">siis</mi><mo> </mo><mi mathvariant="normal">kui</mi><mspace linebreak="newline"/><mi>c</mi><mi>o</mi><msup><mi>s</mi><mn>2</mn></msup><mi mathvariant="normal">α</mi><mo>-</mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mi>α</mi><mo mathvariant="italic">+</mo><mi>c</mi><mi>o</mi><msup><mi>s</mi><mn>2</mn></msup><mi>β</mi><mo>-</mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mi>β</mi><mo mathvariant="italic">.</mo><mo mathvariant="italic">.</mo><mo mathvariant="italic">=</mo><mo mathvariant="italic">-</mo><mn mathvariant="italic">1</mn><mspace linebreak="newline"/><mi mathvariant="normal">teisendame</mi><mo> </mo><mi mathvariant="normal">paremale</mi><mo> </mo><mi mathvariant="normal">kujule</mi><mspace linebreak="newline"/><mn mathvariant="italic">1</mn><mo mathvariant="italic">+</mo><mn mathvariant="italic">1</mn><mo mathvariant="italic">-</mo><mn mathvariant="italic">2</mn><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn mathvariant="italic">2</mn></msup><mi>α</mi><mo mathvariant="italic">+</mo><mn mathvariant="italic">1</mn><mo mathvariant="italic">-</mo><mn mathvariant="italic">2</mn><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn mathvariant="italic">2</mn></msup><mi>β</mi><mo mathvariant="italic">+</mo><mn mathvariant="italic">1</mn><mo mathvariant="italic">-</mo><mn mathvariant="italic">2</mn><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn mathvariant="italic">2</mn></msup><mi>γ</mi><mo mathvariant="italic">.</mo><mo mathvariant="italic">.</mo><mo mathvariant="italic">.</mo><mo mathvariant="italic">=</mo><mn mathvariant="italic">0</mn><mspace linebreak="newline"/><mi mathvariant="normal">v</mi><mi mathvariant="normal">õ</mi><mi mathvariant="normal">i</mi><mo> </mo><mi mathvariant="normal">veel</mi><mo> </mo><mi mathvariant="normal">parem</mi><mo> </mo><mi mathvariant="normal">liidame</mi><mo> </mo><mn>1</mn><mo>-</mo><mi mathvariant="normal">d</mi><mo> </mo><mi mathvariant="normal">kokku</mi><mo>,</mo><mo> </mo><mi mathvariant="normal">N</mi><mo> </mo><mi mathvariant="normal">on</mi><mo> </mo><mi mathvariant="normal">faaside</mi><mo> </mo><mi mathvariant="normal">arv</mi><mspace linebreak="newline"/><mi>N</mi><mo mathvariant="italic">-</mo><mn mathvariant="italic">2</mn><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn mathvariant="italic">2</mn></msup><mi>α</mi><mo mathvariant="italic">-</mo><mn mathvariant="italic">2</mn><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn mathvariant="italic">2</mn></msup><mi>β</mi><mo mathvariant="italic">-</mo><mn mathvariant="italic">2</mn><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn mathvariant="italic">2</mn></msup><mi>γ</mi><mo mathvariant="italic">.</mo><mo mathvariant="italic">.</mo><mo mathvariant="italic">.</mo><mo mathvariant="italic">.</mo><mo mathvariant="italic">=</mo><mn mathvariant="italic">0</mn><mspace linebreak="newline"/><mi mathvariant="normal">ja</mi><mo> </mo><mi mathvariant="normal">kui</mi><mo> </mo><mi mathvariant="normal">see</mi><mo> </mo><mi mathvariant="normal">tingimus</mi><mo> </mo><mi mathvariant="normal">t</mi><mi mathvariant="normal">ä</mi><mi mathvariant="normal">idetud</mi><mo>,</mo><mo> </mo><mi mathvariant="normal">siis</mi><mo> </mo><mi mathvariant="normal">on</mi><mo> </mo><mi mathvariant="normal">v</mi><mi mathvariant="normal">õ</mi><mi mathvariant="normal">imsus</mi><mo> </mo><mi mathvariant="normal">kons</mi><mi>t</mi><mi>a</mi><mi>n</mi><mi mathvariant="normal">te</mi><mspace linebreak="newline"/><mi mathvariant="normal">muidugi</mi><mo> </mo><mi mathvariant="normal">ainult</mi><mo> </mo><mi mathvariant="normal">juhul</mi><mo> </mo><mi mathvariant="normal">kui</mi><mspace linebreak="newline"/><mi>sin</mi><mi mathvariant="normal">α</mi><mi>cos</mi><mi mathvariant="normal">α</mi><mo>+</mo><mi>sin</mi><mi mathvariant="normal">β</mi><mi>cos</mi><mi mathvariant="normal">β</mi><mo>.</mo><mo>.</mo><mo>=</mo><mn>0</mn><mspace linebreak="newline"/><mi mathvariant="normal">Aga</mi><mo> </mo><mi mathvariant="normal">see</mi><mo> </mo><mi mathvariant="normal">on</mi><mo> </mo><mi mathvariant="normal">null</mi><mo> </mo><mi mathvariant="normal">s</mi><mi mathvariant="normal">ü</mi><mi mathvariant="normal">mmeetria</mi><mo> </mo><mi mathvariant="normal">t</mi><mi mathvariant="normal">õ</mi><mi mathvariant="normal">ttu</mi><mo>,</mo><mo> </mo><mi mathvariant="normal">t</mi><mi mathvariant="normal">õ</mi><mi mathvariant="normal">estust</mi><mo> </mo><mi mathvariant="normal">ei</mi><mo> </mo><mi mathvariant="normal">oska</mi><mo> </mo><mi mathvariant="normal">anal</mi><mi mathvariant="normal">ü</mi><mi mathvariant="normal">ü</mi><mi mathvariant="normal">tiliselt</mi><mo> </mo><mi mathvariant="normal">kirjutada</mi><mspace linebreak="newline"/><mspace linebreak="newline"/><mspace linebreak="newline"/></math> RE: Reaalteaduste seminar täiskasvanutele - madis - 25-07-2021 Nõnnaviisi. See eelmine läbra on foorumile ülejõu, räägin homme adminniga äkki saab korda. http://www.imatheq.com/corpsite/index.html Selle abil kirjutasin RE: Reaalteaduste seminar täiskasvanutele - madis64 - 25-07-2021 Tänan. Väikest õhtulugemist... See teisenduskäik võiks su esitluse lõpus "lisad" slaididel olla - et kellel huvi on, saab kohe põhjalikumalt süveneda, kes niisama usub, ei pea sellest midagi teadma. RE: Reaalteaduste seminar täiskasvanutele - madis - 06-08-2021 Uus osa üleval. Tegelikult kasvab see kokku koos osaga 7, nii et 6 lõpp ja "lahtiseks. Palun kommenteerige ja mõnitage vigade pärast. Imelikul kombel on teemal mis kõige rohkem "ajulähedane" väga raske kirjutada, sihuke tunne et midagi jääb puudu koguaeg... RE: Reaalteaduste seminar täiskasvanutele - moi - 06-08-2021 See vajaks küll korrigeerimist: kodumajapidamises leiduvad tarbijad on reeglina üpris lineaar-aktiivse iseloomuga. Kui oleks kõik koormused üpris lineaar-aktiivse iseloomuga, oleks meil võrgus üpris puhas siinus, reaalselt on seal aga väga moonutatud siinus. See ka: Vahelduvpinge korral ei pruugi vool olla alati „samas taktis“ pingega. Vool ja pinge ongi alati "samas taktis", sama sagedusega aga vahest nihutatud faasiga. Seetõttu kasutatakse suurtes elektripaigaldistes mõnikord reaktiivenergia kompensaatoreid. - vajaks täpsustamist, võrguettevõtetel on omad normid, kui suurtel tarbijatel peavad olema paigaldatud kompensaatorid, täpseid numbreid ei tea. RE: Reaalteaduste seminar täiskasvanutele - madis - 06-08-2021 Nõus, korrektsem oleks kirjutada "ka kodutehnikale kehtestatakse järjest rangemaid norme lineaarsuse ja võimsusteguri osas" Ja "samas taktis" - kuidas paremini sõnastada.. kohe ei taha faasijutu kallale minna. Kas äkki "proportsionaalne" ? St vool on alati mingi prop pingest - see kehtib ju ainult aktiivkoormuse korral. RE: Reaalteaduste seminar täiskasvanutele - madis - 06-08-2021 Palun tagasisidet ka kompleksarvude osas. See tekitas loengu ohvrite silmis õudust RE: Reaalteaduste seminar täiskasvanutele - moi - 06-08-2021 Minu arust oli komplaksarvude osas kõik korrektne ja õudust ei tekita, ilmselt see pärast, et olen nendega kokku puutunu. Tegelikult vist ikka üks asi oli, Euleri valem üldkujul oli : https://et.wikipedia.org/wiki/Euleri_valem |