25-07-2021, 10:35 AM
Kirjutasin n-faasilise süsteemi võimsuse võrrandi, võtsin tuletise ajast sõltuvast osast ning leidsin tingimuse mil see tuletis=0
Reaalteaduste seminar täiskasvanutele
|
25-07-2021, 10:35 AM
Kirjutasin n-faasilise süsteemi võimsuse võrrandi, võtsin tuletise ajast sõltuvast osast ning leidsin tingimuse mil see tuletis=0
25-07-2021, 12:48 PM
Selle koha peal kukub "täiskasvanu", kes selliste arvutustega iga päev ei tegele, käru pealt maha ja läheb näoraamatut või instagrammi lugema
Kui üritaks oma kunagisi matemaatilisi oskuseid tolmutada - viitsid selle tuletuskäigu siia üle panna?
25-07-2021, 01:30 PM
<math xmlns="http://www.w3.org/1998/Math/MathML"><mspace linebreak="newline"/><mi mathvariant="normal">ω</mi><mo>=</mo><mn>2</mn><mi mathvariant="normal">π</mi><mi mathvariant="normal">f</mi><mo>*</mo><mi mathvariant="normal">t</mi><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo>-</mo><mo> </mo><mi mathvariant="normal">see</mi><mo> </mo><mi mathvariant="normal">on</mi><mo> </mo><mi mathvariant="normal">siis</mi><mo> </mo><mi mathvariant="normal">ajaparameeter</mi><mspace linebreak="newline"/><mi mathvariant="normal">α</mi><mo>,</mo><mi mathvariant="normal">β</mi><mo>,</mo><mi mathvariant="normal">γ</mi><mo>.</mo><mo>.</mo><mo>.</mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo>-</mo><mo> </mo><mi mathvariant="normal">need</mi><mo> </mo><mi mathvariant="normal">on</mi><mo> </mo><mi mathvariant="normal">faa</mi><mi>s</mi><mi>i</mi><mi>n</mi><mi mathvariant="normal">ihked</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">esimene</mi><mo> </mo><mi mathvariant="normal">faas</mi><mo> </mo><mi mathvariant="normal">on</mi><mo> </mo><mi mathvariant="normal">ilma</mi><mo> </mo><mi mathvariant="normal">nihketa</mi><mo> </mo><mi mathvariant="normal">ja</mi><mo> </mo><mi mathvariant="normal">ilma</mi><mo> </mo><mi mathvariant="normal">t</mi><mi mathvariant="normal">ä</mi><mi mathvariant="normal">heta</mi><mo>,</mo><mo> </mo><mi mathvariant="normal">st</mi><mo> </mo><mn>3</mn><mi mathvariant="normal">faasilisel</mi><mo> </mo><mi mathvariant="normal">on</mi><mo> </mo><mn>2</mn><mo> </mo><mi mathvariant="normal">nihet</mi><mo>)</mo><mo> </mo><mspace linebreak="newline"/><mi>P</mi><mo>=</mo><mfrac><mrow><msup><mi>U</mi><mn>2</mn></msup></mrow><mi>R</mi></mfrac><mo>(</mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mi>ω</mi><mo> </mo><mo>+</mo><mo> </mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mo>(</mo><mi>ω</mi><mo>+</mo><mi>α</mi><mo>)</mo><mo> </mo><mo>+</mo><mo> </mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mo>(</mo><mi>ω</mi><mo>+</mo><mi>β</mi><mo>)</mo><mo> </mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>)</mo><mspace linebreak="newline"/><mi mathvariant="normal">ignoreerime</mi><mo> </mo><mi mathvariant="normal">konstantset</mi><mo> </mo><mi mathvariant="normal">osa</mi><mo> </mo><mfrac><mrow><msup><mi>U</mi><mn>2</mn></msup></mrow><mi>R</mi></mfrac><mo> </mo><mspace linebreak="newline"/><mi mathvariant="normal">kui</mi><mo> </mo><mi mathvariant="normal">ajaparameeter</mi><mo> </mo><mi mathvariant="normal">ei</mi><mo> </mo><mi mathvariant="normal">muutu</mi><mo>,</mo><mo> </mo><mi mathvariant="normal">siis</mi><mo> </mo><mi mathvariant="normal">j</mi><mi mathvariant="normal">ä</mi><mi mathvariant="normal">relikult</mi><mo> </mo><mi mathvariant="normal">on</mi><mo> </mo><mi mathvariant="normal">v</mi><mi mathvariant="normal">õ</mi><mi mathvariant="normal">imsus</mi><mo> </mo><mi mathvariant="normal">kons</mi><mi>t</mi><mi>a</mi><mi>n</mi><mi mathvariant="normal">tne</mi><mspace linebreak="newline"/><mi mathvariant="normal">kui</mi><mo> </mo><mi mathvariant="normal">funktsioon</mi><mo> </mo><mi mathvariant="normal">ei</mi><mo> </mo><mi mathvariant="normal">muutu</mi><mo>,</mo><mo> </mo><mi mathvariant="normal">siis</mi><mo> </mo><mi mathvariant="normal">tema</mi><mo> </mo><mi mathvariant="normal">tuletis</mi><mo> </mo><mi mathvariant="normal">on</mi><mo> </mo><mn>0</mn><mo>,</mo><mo> </mo><mi mathvariant="normal">j</mi><mi mathvariant="normal">ä</mi><mi mathvariant="normal">relikult</mi><mspace linebreak="newline"/><mo>(</mo><mrow><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mi>ω</mi><mo> </mo><mo>+</mo><mo> </mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mo>(</mo><mrow><mi>ω</mi><mo>+</mo><mi>α</mi></mrow><mo>)</mo><mo> </mo><mo>+</mo><mo> </mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mo>(</mo><mrow><mi>ω</mi><mo>+</mo><mi>β</mi></mrow><mo>)</mo><mo> </mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo></mrow><mo>)</mo><mo>'</mo><mo> </mo><mo>=</mo><mn>0</mn><mspace linebreak="newline"/><mo>(</mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mi>ω</mi><mo mathvariant="italic">)</mo><mo mathvariant="italic">'</mo><mo mathvariant="italic">=</mo><mn mathvariant="italic">2</mn><mi mathvariant="italic">s</mi><mi mathvariant="italic">i</mi><mi mathvariant="italic">n</mi><mi>ω</mi><mi mathvariant="italic">c</mi><mi mathvariant="italic">o</mi><mi mathvariant="italic">s</mi><mi>ω</mi><mspace linebreak="newline"/><mi mathvariant="normal">tuletis</mi><mo> </mo><mi mathvariant="normal">seega</mi><mspace linebreak="newline"/><mn>2</mn><mo>(</mo><mi>s</mi><mi>i</mi><mi>n</mi><mi>ω</mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>ω</mi><mo mathvariant="italic">+</mo><mi>s</mi><mi>i</mi><mi>n</mi><mo mathvariant="italic">(</mo><mi>ω</mi><mo mathvariant="italic">+</mo><mi>α</mi><mo mathvariant="italic">)</mo><mi>c</mi><mi>o</mi><mi>s</mi><mi>ω</mi><mo mathvariant="italic" mathvariant="italic">(</mo><mrow><mi>ω</mi><mo mathvariant="italic">+</mo><mi>α</mi></mrow><mo mathvariant="italic" mathvariant="italic">)</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>)</mo><mspace linebreak="newline"/><mi mathvariant="normal">teisendame</mi><mo> </mo><mi>s</mi><mi>i</mi><mi>n</mi><mo mathvariant="italic">(</mo><mrow><mi>ω</mi><mo mathvariant="italic">+</mo><mi>α</mi></mrow><mo mathvariant="italic">)</mo><mo>=</mo><mi>s</mi><mi>i</mi><mi>n</mi><mi>ω</mi><mo mathvariant="italic">*</mo><mi mathvariant="italic">c</mi><mi mathvariant="italic">o</mi><mi mathvariant="italic">s</mi><mi>α</mi><mo mathvariant="italic"> </mo><mo mathvariant="italic">+</mo><mo mathvariant="italic"> </mo><mi mathvariant="italic">c</mi><mi mathvariant="italic">o</mi><mi mathvariant="italic">s</mi><mi>ω</mi><mo mathvariant="italic">*</mo><mi mathvariant="italic">s</mi><mi mathvariant="italic">i</mi><mi mathvariant="italic">n</mi><mi>α</mi><mo mathvariant="italic"> </mo><mo mathvariant="italic"> </mo><mi>n</mi><mi>i</mi><mi>n</mi><mi>g</mi><mo mathvariant="italic"> </mo><mi mathvariant="italic">c</mi><mi mathvariant="italic">o</mi><mi mathvariant="italic">s</mi><mo mathvariant="italic" mathvariant="italic">(</mo><mrow><mi>ω</mi><mo mathvariant="italic">+</mo><mi>α</mi></mrow><mo mathvariant="italic" mathvariant="italic">)</mo><mo>=</mo><mi mathvariant="italic">cos</mi><mi>ω</mi><mo mathvariant="italic">*</mo><mi>c</mi><mi>o</mi><mi>s</mi><mi>α</mi><mo mathvariant="italic"> </mo><mo mathvariant="italic">-</mo><mo mathvariant="italic"> </mo><mi mathvariant="italic">sin</mi><mi>ω</mi><mo mathvariant="italic">*</mo><mi>s</mi><mi>i</mi><mi>n</mi><mi>α</mi><mspace linebreak="newline"/><mi mathvariant="normal">asendame</mi><mo> </mo><mi mathvariant="normal">ja</mi><mo> </mo><mi mathvariant="normal">korrutame</mi><mo> </mo><mi mathvariant="normal">ning</mi><mo> </mo><mi mathvariant="normal">toome</mi><mo> </mo><mi mathvariant="normal">ü</mi><mi mathvariant="normal">hised</mi><mo> </mo><mi mathvariant="normal">tegurid</mi><mo> </mo><mi mathvariant="normal">sulgude</mi><mo> </mo><mi mathvariant="normal">ette</mi><mspace linebreak="newline"/><mn>2</mn><mo>(</mo><mi>s</mi><mi>i</mi><mi>n</mi><mi>ω</mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>ω</mi><mo mathvariant="italic">)</mo><mo mathvariant="italic">(</mo><mn mathvariant="italic">1</mn><mo mathvariant="italic">+</mo><mi mathvariant="italic">c</mi><mi mathvariant="italic">o</mi><msup><mi mathvariant="italic">s</mi><mn>2</mn></msup><mi mathvariant="normal">α</mi><mo>-</mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mi>α</mi><mo mathvariant="italic">+</mo><mi>c</mi><mi>o</mi><msup><mi>s</mi><mn>2</mn></msup><mi>β</mi><mo>-</mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mi>β</mi><mo mathvariant="italic">.</mo><mo mathvariant="italic">.</mo><mo mathvariant="italic">.</mo><mo mathvariant="italic">)</mo><mo mathvariant="italic">+</mo><mn mathvariant="italic">2</mn><mfenced open="(" close=")"><mrow><mi mathvariant="normal">sin</mi><mi mathvariant="normal">α</mi><mi mathvariant="normal">cos</mi><mi mathvariant="normal">α</mi><mo>+</mo><mi>sin</mi><mi mathvariant="normal">β</mi><mi>cos</mi><mi mathvariant="normal">β</mi><mo>.</mo><mo>.</mo></mrow></mfenced><mo>(</mo><mi>c</mi><mi>o</mi><msup><mi>s</mi><mn>2</mn></msup><mi>ω</mi><mo>-</mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mi>ω</mi><mo>)</mo><mspace linebreak="newline"/><mi mathvariant="normal">anal</mi><mi mathvariant="normal">ü</mi><mi mathvariant="normal">ü</mi><mi mathvariant="normal">sime</mi><mo>,</mo><mo> </mo><mi mathvariant="normal">mis</mi><mo> </mo><mi mathvariant="normal">juhul</mi><mo> </mo><mi mathvariant="normal">on</mi><mo> </mo><mi mathvariant="normal">vastus</mi><mo> </mo><mi mathvariant="normal">alati</mi><mo> </mo><mn>0</mn><mspace linebreak="newline"/><mi>s</mi><mi>i</mi><mi>n</mi><mi>ω</mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>ω</mi><mo mathvariant="italic"> </mo><mo mathvariant="italic">-</mo><mo mathvariant="italic"> </mo><mi mathvariant="normal">ei</mi><mo> </mo><mi mathvariant="normal">saa</mi><mo> </mo><mi mathvariant="normal">olla</mi><mo> </mo><mi mathvariant="normal">null</mi><mo> </mo><mi mathvariant="normal">iga</mi><mo> </mo><mi mathvariant="normal">ω</mi><mo> </mo><mi mathvariant="normal">v</mi><mi mathvariant="normal">ä</mi><mi mathvariant="normal">ä</mi><mi mathvariant="normal">rtuse</mi><mo> </mo><mi mathvariant="normal">korral</mi><mspace linebreak="newline"/><mi>c</mi><mi>o</mi><msup><mi>s</mi><mn>2</mn></msup><mi>ω</mi><mo>-</mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mi>ω</mi><mo> </mo><mo>-</mo><mo> </mo><mi mathvariant="normal">samuti</mi><mo> </mo><mi mathvariant="normal">mitte</mi><mspace linebreak="newline"/><mn mathvariant="italic">1</mn><mo mathvariant="italic">+</mo><mi>c</mi><mi>o</mi><msup><mi>s</mi><mn>2</mn></msup><mi mathvariant="normal">α</mi><mo>-</mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mi>α</mi><mo mathvariant="italic">+</mo><mi>c</mi><mi>o</mi><msup><mi>s</mi><mn>2</mn></msup><mi>β</mi><mo>-</mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mi>β</mi><mo mathvariant="italic">.</mo><mo mathvariant="italic">.</mo><mo mathvariant="italic">.</mo><mo mathvariant="italic"> </mo><mi mathvariant="normal">on</mi><mo> </mo><mi mathvariant="normal">null</mi><mo> </mo><mi mathvariant="normal">siis</mi><mo> </mo><mi mathvariant="normal">kui</mi><mspace linebreak="newline"/><mi>c</mi><mi>o</mi><msup><mi>s</mi><mn>2</mn></msup><mi mathvariant="normal">α</mi><mo>-</mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mi>α</mi><mo mathvariant="italic">+</mo><mi>c</mi><mi>o</mi><msup><mi>s</mi><mn>2</mn></msup><mi>β</mi><mo>-</mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mi>β</mi><mo mathvariant="italic">.</mo><mo mathvariant="italic">.</mo><mo mathvariant="italic">=</mo><mo mathvariant="italic">-</mo><mn mathvariant="italic">1</mn><mspace linebreak="newline"/><mi mathvariant="normal">teisendame</mi><mo> </mo><mi mathvariant="normal">paremale</mi><mo> </mo><mi mathvariant="normal">kujule</mi><mspace linebreak="newline"/><mn mathvariant="italic">1</mn><mo mathvariant="italic">+</mo><mn mathvariant="italic">1</mn><mo mathvariant="italic">-</mo><mn mathvariant="italic">2</mn><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn mathvariant="italic">2</mn></msup><mi>α</mi><mo mathvariant="italic">+</mo><mn mathvariant="italic">1</mn><mo mathvariant="italic">-</mo><mn mathvariant="italic">2</mn><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn mathvariant="italic">2</mn></msup><mi>β</mi><mo mathvariant="italic">+</mo><mn mathvariant="italic">1</mn><mo mathvariant="italic">-</mo><mn mathvariant="italic">2</mn><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn mathvariant="italic">2</mn></msup><mi>γ</mi><mo mathvariant="italic">.</mo><mo mathvariant="italic">.</mo><mo mathvariant="italic">.</mo><mo mathvariant="italic">=</mo><mn mathvariant="italic">0</mn><mspace linebreak="newline"/><mi mathvariant="normal">v</mi><mi mathvariant="normal">õ</mi><mi mathvariant="normal">i</mi><mo> </mo><mi mathvariant="normal">veel</mi><mo> </mo><mi mathvariant="normal">parem</mi><mo> </mo><mi mathvariant="normal">liidame</mi><mo> </mo><mn>1</mn><mo>-</mo><mi mathvariant="normal">d</mi><mo> </mo><mi mathvariant="normal">kokku</mi><mo>,</mo><mo> </mo><mi mathvariant="normal">N</mi><mo> </mo><mi mathvariant="normal">on</mi><mo> </mo><mi mathvariant="normal">faaside</mi><mo> </mo><mi mathvariant="normal">arv</mi><mspace linebreak="newline"/><mi>N</mi><mo mathvariant="italic">-</mo><mn mathvariant="italic">2</mn><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn mathvariant="italic">2</mn></msup><mi>α</mi><mo mathvariant="italic">-</mo><mn mathvariant="italic">2</mn><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn mathvariant="italic">2</mn></msup><mi>β</mi><mo mathvariant="italic">-</mo><mn mathvariant="italic">2</mn><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn mathvariant="italic">2</mn></msup><mi>γ</mi><mo mathvariant="italic">.</mo><mo mathvariant="italic">.</mo><mo mathvariant="italic">.</mo><mo mathvariant="italic">.</mo><mo mathvariant="italic">=</mo><mn mathvariant="italic">0</mn><mspace linebreak="newline"/><mi mathvariant="normal">ja</mi><mo> </mo><mi mathvariant="normal">kui</mi><mo> </mo><mi mathvariant="normal">see</mi><mo> </mo><mi mathvariant="normal">tingimus</mi><mo> </mo><mi mathvariant="normal">t</mi><mi mathvariant="normal">ä</mi><mi mathvariant="normal">idetud</mi><mo>,</mo><mo> </mo><mi mathvariant="normal">siis</mi><mo> </mo><mi mathvariant="normal">on</mi><mo> </mo><mi mathvariant="normal">v</mi><mi mathvariant="normal">õ</mi><mi mathvariant="normal">imsus</mi><mo> </mo><mi mathvariant="normal">kons</mi><mi>t</mi><mi>a</mi><mi>n</mi><mi mathvariant="normal">te</mi><mspace linebreak="newline"/><mi mathvariant="normal">muidugi</mi><mo> </mo><mi mathvariant="normal">ainult</mi><mo> </mo><mi mathvariant="normal">juhul</mi><mo> </mo><mi mathvariant="normal">kui</mi><mspace linebreak="newline"/><mi>sin</mi><mi mathvariant="normal">α</mi><mi>cos</mi><mi mathvariant="normal">α</mi><mo>+</mo><mi>sin</mi><mi mathvariant="normal">β</mi><mi>cos</mi><mi mathvariant="normal">β</mi><mo>.</mo><mo>.</mo><mo>=</mo><mn>0</mn><mspace linebreak="newline"/><mi mathvariant="normal">Aga</mi><mo> </mo><mi mathvariant="normal">see</mi><mo> </mo><mi mathvariant="normal">on</mi><mo> </mo><mi mathvariant="normal">null</mi><mo> </mo><mi mathvariant="normal">s</mi><mi mathvariant="normal">ü</mi><mi mathvariant="normal">mmeetria</mi><mo> </mo><mi mathvariant="normal">t</mi><mi mathvariant="normal">õ</mi><mi mathvariant="normal">ttu</mi><mo>,</mo><mo> </mo><mi mathvariant="normal">t</mi><mi mathvariant="normal">õ</mi><mi mathvariant="normal">estust</mi><mo> </mo><mi mathvariant="normal">ei</mi><mo> </mo><mi mathvariant="normal">oska</mi><mo> </mo><mi mathvariant="normal">anal</mi><mi mathvariant="normal">ü</mi><mi mathvariant="normal">ü</mi><mi mathvariant="normal">tiliselt</mi><mo> </mo><mi mathvariant="normal">kirjutada</mi><mspace linebreak="newline"/><mspace linebreak="newline"/><mspace linebreak="newline"/></math>
25-07-2021, 01:36 PM
(Seda postitust muudeti viimati: 25-07-2021, 01:39 PM ja muutjaks oli madis.)
Nõnnaviisi. See eelmine läbra on foorumile ülejõu, räägin homme adminniga äkki saab korda.
http://www.imatheq.com/corpsite/index.html Selle abil kirjutasin
25-07-2021, 02:24 PM
(Seda postitust muudeti viimati: 25-07-2021, 02:26 PM ja muutjaks oli madis64.)
Tänan. Väikest õhtulugemist...
See teisenduskäik võiks su esitluse lõpus "lisad" slaididel olla - et kellel huvi on, saab kohe põhjalikumalt süveneda, kes niisama usub, ei pea sellest midagi teadma.
06-08-2021, 01:57 PM
Uus osa üleval. Tegelikult kasvab see kokku koos osaga 7, nii et 6 lõpp ja "lahtiseks.
Palun kommenteerige ja mõnitage vigade pärast. Imelikul kombel on teemal mis kõige rohkem "ajulähedane" väga raske kirjutada, sihuke tunne et midagi jääb puudu koguaeg...
06-08-2021, 10:52 PM
See vajaks küll korrigeerimist: kodumajapidamises leiduvad tarbijad on reeglina üpris lineaar-aktiivse iseloomuga.
Kui oleks kõik koormused üpris lineaar-aktiivse iseloomuga, oleks meil võrgus üpris puhas siinus, reaalselt on seal aga väga moonutatud siinus. See ka: Vahelduvpinge korral ei pruugi vool olla alati „samas taktis“ pingega. Vool ja pinge ongi alati "samas taktis", sama sagedusega aga vahest nihutatud faasiga. Seetõttu kasutatakse suurtes elektripaigaldistes mõnikord reaktiivenergia kompensaatoreid. - vajaks täpsustamist, võrguettevõtetel on omad normid, kui suurtel tarbijatel peavad olema paigaldatud kompensaatorid, täpseid numbreid ei tea.
06-08-2021, 10:57 PM
Nõus, korrektsem oleks kirjutada "ka kodutehnikale kehtestatakse järjest rangemaid norme lineaarsuse ja võimsusteguri osas"
Ja "samas taktis" - kuidas paremini sõnastada.. kohe ei taha faasijutu kallale minna. Kas äkki "proportsionaalne" ? St vool on alati mingi prop pingest - see kehtib ju ainult aktiivkoormuse korral.
06-08-2021, 10:58 PM
Palun tagasisidet ka kompleksarvude osas. See tekitas loengu ohvrite silmis õudust
06-08-2021, 11:05 PM
(Seda postitust muudeti viimati: 06-08-2021, 11:10 PM ja muutjaks oli moi.)
Minu arust oli komplaksarvude osas kõik korrektne ja õudust ei tekita, ilmselt see pärast, et olen nendega kokku puutunu.
Tegelikult vist ikka üks asi oli, Euleri valem üldkujul oli : https://et.wikipedia.org/wiki/Euleri_valem |
« Järgmine vanem | Järgmine uuem »
|